Дормашев Ю.
Б., Романов В.
Я. Психология внимания. М-: Тривола, 1995 Д. Канеман, опираясь на свою модель, объясняет отрицательные эффекты низкой и высокой активации работой разных механизмов. Ухудшение деятельности при низких значениях активации обусловлено недостаточным вкладом усилия. Причем, как отмечает автор, дело не в том, что активация не может увеличиться до уровня, соответствующего требованиям задачи- Получены данные, говорящие о том, что при сильной мотивации утомленные и сонные испытуемые все-таки справляются с задачей. Первичная причина низкой продуктивности заключается в слабости мотивации субъекта. Как следствие, во-первых, нарушается работа механизма обратной связи (блока оценки необходимой мощности), а значит, и степень вкладываемого усилия оказывается ниже необходимой и, во-вторых, появляются ошибки в работе блока текущих намерений. Итак, при низкой мотивации установка на задачу и оценка текущих результатов ее выполнения могут быть неадекватными. Ухудшение деятельности при высоких значениях активации автор объясняет изменением режима функционирования блока политики распределения. При этом он обсуждает известные факты и теории сужения поля, увеличения подвижности, отвлекаемости зрительного внимания и трудности произвольного управления им в условиях стресса. На рис. 1 эти негативные эффекты показаны в виде стрелки, идущей с блока активации на блок политики распределения.
Свою модель Д.
Канеман построил на основании результатов ряда экспериментальных исследований. в том числе, собственных. Так. совместно с коллегами он провел цикл работ, направленных на проверку предположения о тесной связи активации с усилием и пришел к выводу, что одним из самых надежных показателей динамики умственного усилия является изменение диаметра зрачка, С целью тестирования степени внимания он использовал методику вторичной зондовой задачи. Основную идею такого измерения автор иллюстрирует гипотетическими функциями, показанными на рис. 3. Рис. 3. Зависимость вклада усилия от требований основной задачи (Kahneman, 1973. Р. 15. Fig. 2-1)Здесь по оси абсцисс откладывается уровень текущих требований к умственному усилию со стороны первичной (основной) задачи, а по оси ординат – уровень усилия, действительного вкладываемого в эту задачу. Если бы расход усилия полностью отвечал требованиям, то соответствующая зависимость приняла бы вид прямой с углом наклона в 45 град (тонкая пунктирная линия). На самом деле, поскольку уровень доступной мощности ограничен, прямая, начиная с какого-то значения требований, перейдет в кривую, проходящую несколько ниже (сплошная линия), и при дальнейшем росте требований разрыв между ними будет постепенно увеличиваться.
На рисунке представлена также функция общего усилия (толстая пунктирная линия), прикладываемого ко всем действующим или подготовленным к действию структурам переработки информации. Д.
Канеман предполагает, что усилие в какой-то степени расходуется даже при отсутствии требований, то есть когда человек ничем не занят. В этом состоянии вес же происходит непрерывный контроль (мониторинг) внешнего окружения. Кроме того, продолжается приток усилия, обусловленный постоянными диспозициями. Поэтому, как видно из графика, функция общего усилия начинается не с нуля, а с какого-то определенного значения. Разницу между общим усилием и усилием, вкладываемым в основную деятельность, Д.
Канеман называет запасной мощностью. При увеличении усилия, расходуемого на выполнение основной задачи, запасная мощность уменьшается. Дополнительную (вторичную) задачу испытуемый может решать только за счет запасной мощности. Если первичная задача потребует большего усилия, то запасная мощность уменьшится и продуктивность решения вторичной задачи снизится на соответствующую величину и, наоборот, при снижении требований основной задачи продуктивность выполнения дополнительной задачи возрастет. Следовательно, изменение продуктивности решения вторичной задачи отражает изменение степени умственного усилия, вкладываемого в первичную.
В экспериментах Д.
Канемана испытуемым предъявляли на слух последовательности из четырех цифр (например, 3,8.1,6) со скоростью одна цифра в секунду. Спустя одну – две секунды испытуемый должен был ответить в том же темпе последовательностью цифр, каждая из которых отличалась от слышанной на одну единицу (4. 9, 2, 7), Начало и ритм ответа задавались звуковыми сигналами, предъявленными с той же магнитной записи, что и цифры трансформируемого цифрового ряда. Правильными считались безошибочные и полные ответы, проходившие в нужном темпе.
Задача трансформации цифр была для испытуемых основной. Одновременно решась дополнительная зрительная задача идентификации целевой буквы. Прямо перед испытуемым располагался экран, на котором вспыхивали одна за другой различные буквы со скоростью 5 букв в 1 с. Эта последовательность начиналась за 1 с до предъявления первой цифры слухового ряда, продолжалась в течение всей пробы и заканчивалась спустя 1 с после отчета о последней цифре. Внутри непрерывного ряда букв, один раз на протяжении каждой пробы, предъявляли зрительный шум (50 мс), затем целевую букву (80 мс) и снова зрительный шум (50 мс). Испытуемый должен был по окончании пробы назвать эту букву. Целевая буква появлялась непредсказуемо в одном из 5 моментов решения задачи трансформации цифр: параллельно предъявлению первой и третьей цифры, в середине паузы перед ответом, при воспроизведении второй и четвертой цифры трансформированного ряда.
Приоритет задачи трансформации цифр обеспечивали платежной матрицей. За каждую пробу с успешным решением обеих задач испытуемый получал премию в 4 цента. В случае правильного ответа задачи трансформации, но ошибочной идентификации целевой буквы премия снижалась до 2-х центов. За неудачу в задаче трансформации цифр испытуемого штрафовали на 4 цента. На протяжении всех проб данного эксперимента проводилась параллельная, непрерывная регистрация диаметра зрачка,Д.
Канеман предположил, что усилие. вкладываемое в основную задачу. меняется по ходу ее выполнения закономерным образом. На этапе предъявления или прослушивания цифр оно должно увеличиваться, достигая максимальной величины в паузе перед ответом, а затем снижаться вплоть до начального уровня. Это связано с определенным изменением требований структуры кратковременной памяти — сначала, по мере накопления информации, ее нагрузка растет, а затем, по ходу ответа, уменьшается. Экспериментальные результаты, представленные па рис. 4. подтвердили это предположение.
Рис. 4. Показатели изменения диаметра зрачка и продуктивности решения основной и дополнительной задач (адапт. Kahneman, 1973. Р. 21. Fig. 2-3)По оси абсцисс графиков, изображенных на этом рисунке, откладывается текущее время пробы (в секундах). Ноль оси соответствует началу зрительного предъявления последовательности букв дополнительной задачи, первая метка соответствует началу подачи первой цифры слухового ряда основной задачи, вторая метка – второй цифры и т.д. Тонкими вертикальными линиями на поле графиков выделена пауза, разделяющая две стадии решения основной задачи: прослушивание (предъявление цифр) и отчет (воспроизведение цифр, полученных из элементов предъявленного ряда путем прибавления единицы). Каждому из 4-х ответов соответствует точка на оси времени.
На левой оси ординат откладываются средние показатели продуктивности (число ошибок в %) решения основной и дополнительной задач. Правая ось ординат служит для обозначения результатов регистрации диаметра зрачка у группы испытуемых. По этой оси откладываются средние показатели расширения зрачка (в мм) относительно исходного уровня, соответствующего началу прослушивания цифр. При этом в расчет принимались данные, полученные в пробах с правильными ответами. Так было сделано потому, что расширение зрачка может быть, как известно, эмоциональной реакцией на ошибку, допущенную и осознанную испытуемым на стадии прослушивания или отчета.
Нижняя пунктирная кривая показывает процент ошибок в решении основной задачи в зависимости от момента предъявления зрительной цели. Как видно из графика, продуктивность решения задачи трансформации цифр остается практически постоянной, то есть при различных временных позициях цели число ошибок колеблется в узком диапазоне от 15 до 20%. Этот результат имеет большое значение, поскольку говорит о том, что задача трансформации цифр была, во-первых, трудной для испытуемых и, во-вторых, приоритетной, основной или первичной. Следовательно, в данном эксперименте было обеспечено условие достаточно высоких требований к усилию и, возвратившись к рис. 3, можно сказать, что усилие испытуемых, направленное на решение основной задачи, перемещаясь туда-сюда по кривой (сплошная линия), всегда находилось на криволинейном участке функции требуемое – расходуемое усилие, и потому условие тестирования усилия первичной задачи по показателю решения вторичной задачи полностью выполнено.
Согласно теории ограниченного умственного усилия, скорость и точность ответа на зонд, вводимый в непредсказуемые моменты решения основной задачи, служат показателями запасной мощности, подводимой к структурам вторичной задачи (здесь — перцептивного мониторинга) в момент предъявления зонда (целевой буквы в данном эксперименте). График продуктивности решения задачи идентификации целевой буквы построен по данным проб с правильными ответами задачи трансформации. Пробы с ошибочными ответами в основной задаче исключались, поскольку только в случаях верного ответа можно уверенно утверждать, что в ее решение действительно вкладывалось необходимое усилие. Как видно из рисунка, число ошибок идентификации букв, показанное в виде зачерненных и соединенных сплошной линией квадратов, растет на стадии прослушивания, максимально в период паузы и резко снижается по ходу отчета.
Важнейшим результатом этого эксперимента Д.
Канеман считает факт корреляции диаметра зрачка с продуктивностью решения вторичной задачи и делает вывод о том, что зрачок отражает динамику умственного усилия, вкладываемого в основную задачу. Действительно, из рисунка видно, что кривая расширения зрачка (пустые кружки, соединенные сплошной линией) в целом сходна с кривой продуктивности выполнения вторичной задачи. Автор подчеркивает, что данный психофизиологический показатель дает непрерывную оценку изменения умственного усилия в каждой отдельной пробе эксперимента. Отсюда следует, что при соблюдении определенных условий, регистрируя только диаметр зрачка, исследователи могут по характеру изменений этого, отметим, непроизвольного показателя, судить о динамике степени умственного усилия или внимания при выполнении любой деятельности, не прибегая к процедурам многократного тестирования, дополнительной нагрузки вторичной задачей и громоздкой статистической обработки.
По мнению Д.
Канемана, модель внимания как умственного усилия хорошо объясняет факт зависимости диаметра зрачка от степени умственного усилия. Полученные данные говорили о том, что расширение зрачка является надежным показателем роста именно умственного усилия, а не следствием увеличения активации из-за воздействия других факторов (моторная напряженность, тревожность, шум и пр.). Так, если в задаче трансформации цифр испытуемые прибавляют тройку, то соответствующая кривая расширения зрачка проходит выше, чем при более легком условии прибавления единицы.
